Este es el último artículo de la serie sobre el concepto matemático de distancia y similitud melódica. En el primer artículo revisamos las principales propiedades de la distancia como objeto matemático e hicimos una lista de los numerosos campos en que se usa este fructífero concepto. En ese mismo artículo introdujimos el concepto de similitud melódica y lo ilustramos con las famosas variaciones de Mozart K. 265 sobre el tema popular Ah, vous dirai-je, Maman. En el segundo artículo entramos en detalles más técnicos. En primer lugar, definimos las representaciones abstractas de las melodías y, en segundo lugar, cómo se aplican ciertas transformaciones a esas representaciones de las cuales sale la medida de similitud. Transformaciones las hay de muy diversa naturaleza y en el segundo artículo examinamos las siguientes entre las más relevantes: las transformaciones de altura, las transformaciones rítmicas y las medidas simbólicas. Por razones de longitud, dejamos para este artículo las transformaciones basadas en medidas sobre vectores y las medidas armónicas. Por último, en este artículo describiremos los experimentos de Müllensiefen y Frieler [MF04] para la validación perceptual de esas medidas.

La gran dificultad de diseñar una medida que refleje fielmente la medida de similitud humana es precisamente tener datos de referencia -lo que inglés se llama ground truth-. No sabemos si una medida es buena o no porque no tenemos los verdaderos valores de la similitud melódica en humanos. Müllensiefen y Frieler suplieron esa deficiencia a través de sus experimentos. Con los resultados obtenidos pudieron comparar las distintas medidas de similitud que hay en la bibliografía y, finalmente, concluir cuál es la que más se acerca a la medida de similitud humana.

[MF04] D. Mullensiefen and K. Frieler. Cognitive adequacy in the measurement of melodic similarity: Algorithmic vs. human judgments. Computing in Musicology, 13:147–176, 2004.

 

 


SIGUE LEYENDO EL ARTÍCULO AQUÍ.

Go to top